skip to main content


Search for: All records

Creators/Authors contains: "Helms, Jackson A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Agricultural landscapes can be managed to protect biodiversity and maintain ecosystem services. One approach to achieve this is to restore native perennial vegetation within croplands. Where rowcrops have displaced prairie, as in the US Midwest, restoration of native perennial vegetation can align with crops in so called “prairie strips.” We tested the effect of prairie strips in addition to other management practices on a variety of taxa and on a suite of ecosystem services. To do so, we worked within a 33-year-old experiment that included treatments that varied methods of agricultural management across a gradient of land use intensity. In the two lowest intensity crop management treatments, we introduced prairie strips that occupied 5% of crop area. We addressed three questions: (1) What are the effects of newly established prairie strips on the spillover of biodiversity and ecosystem services into cropland? (2) How does time since prairie strip establishment affect biodiversity and ecosystem services? (3) What are the tradeoffs and synergies among biodiversity conservation, non-provisioning ecosystem services, and provisioning ecosystem services (crop yield) across a land use intensity gradient (which includes prairie strips)? Within prairie strip treatments, where sampling effort occurred within and at increasing distance from strips, dung beetle abundance, spider abundance and richness, active carbon, decomposition, and pollination decreased with distance from prairie strips, and this effect increased between the first and second year. Across the entire land use intensity gradient, treatments with prairie strips and reduced chemical inputs had higher butterfly abundance, spider abundance, and pollination services. In addition, soil organic carbon, butterfly richness, and spider richness increased with a decrease in land use intensity. Crop yield in one treatment with prairie strips was equal to that of the highest intensity management, even while including the area taken out of production. We found no effects of strips on ant biodiversity and greenhouse gas emissions (N 2 O and CH 4 ). Our results show that, even in early establishment, prairie strips and lower land use intensity can contribute to the conservation of biodiversity and ecosystem services without a disproportionate loss of crop yield. 
    more » « less
  2. Schmidt-Jeffris, Rebecca A (Ed.)
    Abstract Reducing the use of synthetic fertilizers and pesticides can limit negative impacts of agriculture on insects and is a crucial step towards sustainable agriculture. In the United States, organic agriculture has the potential to reduce greenhouse gas emissions, pollutant runoff, and biodiversity loss in the Midwestern Corn Belt—an area extending over 500,000 km2 devoted to intensive production of corn Zea mays (Linnaeus 1753) (Poales: Poaceae), often in rotation with soy Glycine max (Linnaeus 1753) (Fabales: Fabaceae) or wheat Triticum aestivum (Linnaeus 1753) (Poales: Poaceae). Working in 30-yr-long landscape experiments in this region, we tested for impacts of conventional versus organic agriculture on ant communities (Hymenoptera: Formicidae) and potential ecosystem services they provide. Organic fields supported higher ant diversity and a slightly more species-rich ant assemblage than conventionally managed fields but did not otherwise differ in community composition. Despite similar community composition, organic and conventional fields differed in seasonal patterns of ant foraging activity and potential for natural pest suppression. Conventional plots experienced higher overall ant foraging activity, but with the timing skewed towards late in the growing season such that 75% of ant foraging occurred after crop harvest in a wheat year and was therefore unavailable for pest suppression. Organic fields, in contrast, experienced moderate levels of ant foraging activity throughout the growing season, with most foraging occurring during crop growth. Organic fields thus supported twice as much pest suppression potential as conventional fields. Our results highlight the importance of timing in mediating ecosystem services in croplands and emphasize the value of managing landscapes for multiple services rather than yield alone. 
    more » « less